How to Choose the Right Direct-Cooling Block Ice Machine A Comprehensive Guide

Introduction

 

The direct-cooling block ice machine is a highly efficient refrigeration machine that finds widespread application of the ice machine for fishery, food processing, and supermarket industries. In this article, we will provide you with a comprehensive guide on how to choose a direct-cooling block ice machine that offers excellent value for money and quality.

 

 

Understanding the Principles and Features of Direct-Cooling Block Ice Machines

 

Direct-cooling block ice machines operate by directly absorbing heat using refrigerant, allowing water to freeze into ice blocks within the ice mold. These machines possess several key features:

  • Fast ice production with high-quality ice blocks;
  • Energy-efficient and environmentally friendly, resulting in low operational costs;
  • Simple structure for easy maintenance;
  • Wide application range, customizable ice block sizes according to specific needs.

 

 

 

Understanding the Main Components of a Direct-Cooling Block Ice Machine

 

Before diving into the nuances of selecting a direct-cooling block ice machine, it is crucial to grasp the fundamental components that make up these machines. Each component plays a pivotal role in the machine’s operation, and understanding their functions is essential for making an informed purchase decision.

 

Ice Block Machine Structure

 

  • Ice Machine Compressor: The heart of the direct-cooling block ice machine, the compressor is responsible for pumping the refrigerant through the system. It facilitates the transfer of heat, allowing the refrigerant to absorb heat from the water and convert it into ice. The compressor’s efficiency directly impacts the machine’s ice production rate and energy consumption.

 

  • Ice Machine Evaporator (Ice Block Mold): The evaporator is where the refrigerant absorbs heat from the water, leading to the formation of ice blocks. The design and quality of the evaporator are critical to the machine’s overall performance. In a direct-cooling block ice machine, the ice block mold shapes the ice blocks, and it’s essential to select a mold that meets your specific requirements and desired ice block size.

 

  • Ice Machine Condenser: The condenser is responsible for removing heat from the refrigerant after it has absorbed heat from the water. There are several types of condensers, including water-cooled, air-cooled, and evaporative cooling condensers. Each type has its advantages and is suitable for different environments and applications.

 

  • Ice Machine Control System: The control system is the brain of the machine, managing all operations. It includes the water supply system, refrigeration system, and the automatic ice ejection system. A well-designed and precise control system ensures smooth operation, optimal performance, and safety.

 

  • Ice Machine Mechanical System: The mechanical system includes the tray lifting system and the ice pushing system. The tray lifting system allows for easy loading and unloading of ice blocks, while the ice pushing system automates the process of moving ice blocks from the machine to storage or the desired location.

 

  • Ice Machine Frame and Ice Tray: The frame provides the structural support for the entire machine, ensuring stability and durability. The ice tray holds the water that will freeze into ice blocks, and its design is crucial for efficient ice production and easy ice retrieval.

 

 

 

 

Key Considerations for Choosing a Direct-Cooling Block Ice Machine

 

  • Ice Production Capacity: Determine the required ice production capacity based on your ice maker machine for business needs. Larger ice production capacities often come with higher costs, so it is crucial to strike a balance between capacity and budget.
  • Ice Block Size: Direct-cooling block ice machines come in various ice block sizes, such as 5KG, 25KG, 50KG, and 100KG. Choose a size that aligns with your intended use.
  • Brand and After-Sales Service: Opt for a reputable brand known for quality and reliability. Additionally, consider the after-sales service, including warranty periods, maintenance, and repair services.
  • Efficiency: Look for machines with high ice production efficiency and low energy consumption. Factors affecting efficiency include machine power, ice mold design, and the quality of the compressor and evaporator.
  • Safety: Ensure the machine has safety features such as overload protection and short-circuit protection to guarantee safe operation.

 

 

 

Additional Considerations for Optimal Selection

 

  • Industry Trends: Stay updated on the latest developments in the direct-cooling block ice machine industry, including new models and technologies. This knowledge will help you make informed decisions during the selection process.
  • Manufacturer Background: Investigate the manufacturer’s background, including the ice machine china company history, production facility size, R&D capabilities, equipment quality and stability, energy consumption ratio, export and transportation experience, and more.

 

 

 

 

Conclusion

 

Choosing a direct-cooling block ice machine is a multifaceted task that requires careful consideration. By understanding the principles and features of these machines, comparing their advantages, and selecting a reputable manufacturer with a strong track record, you can secure a high-quality, cost-effective direct-cooling block ice machine that meets your business needs.

 

 

 

Baocharm: Your Trusted Partner in Ice Making

Having navigated the complexities of direct-cooling block ice machines, it is clear that Baocharm stands out as a manufacturer that not only understands the intricacies of ice production but also prioritizes customer satisfaction. Our reputation for providing high-quality, cost-effective solutions is built on years of experience and a commitment to excellence.

 

 

 

Baocharm Ice Machine

 

 

The use of moisture permeability tester

The moisture permeability tester is a professional device used to measure the water vapor transmission rate (WVTR) of textiles, films, non-woven fabrics and other materials. The following are the standard operating procedures and technical points.


I. Equipment structure and principle

Core components

1. Test chamber: sealed chamber with controllable temperature and humidity (usually divided into dry/wet chamber)

2. Weighing system: high-precision balance (0.001g resolution)

3. Temperature control system: PID precise temperature control (range 20-50℃±0.5℃)

4. Humidity system: saturated salt solution or steam generator

5. Data acquisition: automatic recording of mass changes and temperature and humidity


Test principle

Positive cup method (ISO 2528): water vapor permeation from wet chamber to dry chamber

Inverted cup method (ASTM E96): water vapor absorption from dry chamber to wet chamber

Dynamic method (JIS L1099): determination of water vapor carried by airflow


II. Standard operating procedures

1. Sample preparation

Cut a circular sample with a diameter of ≥70mm (no creases/breaks)

If testing multiple layers of materials, stack them according to the actual use direction

Pretreatment: equilibrate at the test temperature and humidity for 24h (GB/T 12704 requirements)


2. Equipment initialization

1. Turn on the constant temperature water bath (set to 23℃ or 38℃)

2. Prepare saturated salt solution:

Dry environment: Mg(NO₃)₂ (RH≈53%)

High humidity environment: K₂SO₄ (RH≈97%)

3. Calibrate the balance (use standard weights)

3. Sample loading and sealing

1. Fix the sample at the mouth of the test cup:

- Positive cup method: add distilled water (liquid surface 3mm away from the sample)

- Inverted cup method: add desiccant (anhydrous CaCl₂)

2. Press with silicone seal to ensure no side leakage

3. Weigh the initial mass (m₀) to an accuracy of 0.001g

4. Test execution

1. Place the test cup in a constant temperature and humidity chamber

2. Set parameters:

Temperature: 23±1℃ or 38±1℃ (select according to the standard)

Air flow rate: 0.5-1.0m/s (dynamic method needs to be set)

Test interval: 1h/time (static method)

3. Start the test, the system automatically records the mass change (m₁, m₂...mₙ)

5. Data processing

Water vapor permeability meter:

WVTR = (Δm×24)/(A×t) Unit: g/(m²·d)

Δm: mass change (g)

A: effective test area (m²)

t: test time (h)

Example:

If the mass decreases by 0.12g within 24h and the test area is 0.00283m², then:

WVTR = (0.12×24)/0.00283 = 1017.7 g/(m²·d)


Email: hello@utstesters.com

Direct: + 86 152 6060 5085

Tel: +86-596-7686689

Web: www.utstesters.com

Uses of fabric air permeability tester

The fabric air permeability tester is an instrument specially used to measure the air permeability of fabrics (such as clothing, footwear, industrial textiles, etc.). Its core purpose is to evaluate the ability of materials to allow air to pass under different pressure difference conditions. The following are its main application scenarios and purposes:


1. Quality control and production optimization

Production process verification: Ensure that the air permeability of fabrics during the production process (such as textile, coating, lamination, etc.) meets the design standards to avoid performance degradation due to process deviations.

Batch consistency detection: Compare different batches of raw materials or finished products to maintain the stability of product air permeability.


2. Functional clothing and equipment development

Sports/outdoor clothing: Test the air permeability of products such as assault jackets and mountaineering clothes, and balance the needs of windproof and moisture removal (such as the research and development of fabrics such as GORE-TEX).

Protective equipment: Evaluate the air permeability of medical protective clothing and industrial dustproof clothing to ensure the protective effect while avoiding stuffiness.

Shoe materials and tents: Optimize the air permeability of upper materials or tent fabrics to improve wearing comfort or ventilation performance.


3. Industry standards and certification

Compliance testing: meet international standards (such as ISO 9237, ASTM D737, GB/T 5453, etc.) and obtain product certification (such as CE, OEKO-TEX).

R&D benchmarking: compare competitor or industry benchmark data to guide new product development.


4. Material research and innovation

Evaluation of new materials: test the air permeability efficiency of innovative materials such as nanofibers and breathable membranes to promote technology applications.

Analysis of multi-layer composite materials: study the impact of different laminate structures (such as non-woven fabrics + films) on overall air permeability.


5. User experience and market competitiveness

Comfort quantification: convert air permeability data (such as mm/s or cfm) into product selling points (such as "air permeability increased by 20%)" to enhance market persuasiveness.

Problem diagnosis: for the "stuffy" problem complained by users, locate material or design defects through testing.


Brief description of test principle

The instrument applies a controllable air pressure difference on both sides of a fixed area of fabric to measure the volume of air (or flow rate) passing through per unit time. The results are usually expressed as air permeability (such as L/m²/s) or air permeability resistance, with higher values indicating greater air permeability.


Key parameters for selecting a tester

Test standard compatibility (such as support for multiple international standards)

Range and accuracy (adapting to different materials from dense down-proof fabrics to sparse mesh fabrics)

Automation functions (such as digital pressure regulation, direct data export)


This type of instrument is indispensable in textile laboratories, quality inspection agencies and R&D centers, and directly affects the functional positioning and market acceptance of products.

Email: hello@utstesters.com

Direct: + 86 152 6060 5085

Tel: +86-596-7686689

Web: www.utstesters.com

Guide to using a textile air permeability tester Accurately test the air permeability of fabrics

Breathability is an important indicator for measuring the comfort of textiles, and is particularly suitable for quality control of products such as sportswear, outdoor equipment, and medical textiles. An air permeability tester can scientifically evaluate the ability of air to pass through fabrics to ensure that the product meets industry standards (such as ISO 9237, ASTM D737, etc.). This article will provide a detailed introduction to the use of an air permeability tester to help you obtain accurate and repeatable test data.


1. Equipment and preparation

(1) Composition of an air permeability tester

Test head: Fixed sample, usually with test holes of different diameters (such as 20cm², 38cm², etc.).

Airflow control system: Adjusts and measures air flow (unit: mm/s or cm³/cm²/s).

Pressure sensor: Detects the pressure difference on both sides of the sample (unit: Pa).

Display/software: Displays test data, and some devices support data export.


(2) Calibration and inspection

Calibration: Calibrate the equipment using a standard calibration plate according to the instructions to ensure accurate data.

Air tightness check: Test whether the airflow is stable when unloaded to avoid air leakage affecting the results.

Environmental conditions: It is recommended to test under standard temperature and humidity (such as 20±2℃, 65±4% RH) to avoid interference from environmental factors.


(3) Sample preparation

Cut at least 5 representative samples (such as 20cm×20cm), avoiding fabric edges or obvious defect areas.

If different parts are tested (such as the front chest and back of the garment), samples must be taken and marked separately.


2. Test steps

(1) Install the sample

1. Loosen the test head clamp and place the sample flat on the test area to avoid wrinkles or stretching.

2. Tighten the clamp evenly to ensure that the sample is fixed and there is no air leakage (you can check by lightly pressing the edge with your fingers).


(2) Set parameters

Test standard: Select the applicable standard (such as ISO 9237, GB/T 5453, etc.).

Test area: Select the test hole size according to the thickness of the sample (small holes for thin fabrics and large holes for thick fabrics).

Pressure difference setting: usually 100Pa or 125Pa, adjusted according to the standard requirements.


(3) Start the test

1. Start the equipment, the system will automatically apply a stable airflow and measure the air permeability.

2. After the value stabilizes (usually 10-30 seconds), record the data (unit: mm/s or L/m²/s).


(4) Repeat the test

Each sample should be tested at least 3 times, and the average value should be taken as the final result.

If the data difference is too large (>10%), it is necessary to check whether the sample is improperly fixed or the equipment is abnormal.


3. Data interpretation and reporting

(1) Common air permeability units

mm/s (millimeter/second): The speed of air flow passing through the fabric vertically.

L/m²/s (liter/square meter/second): The amount of air flow passing through a unit area per unit time.

cfm (cubic feet/minute): Used in some European and American standards.


Summary

Textile air permeability tester is an indispensable tool in research and development, quality inspection and trade. Correct use of equipment and standardized operating procedures can ensure the reliability and comparability of test data. Whether it is product development or acceptance inspection, scientific air permeability evaluation can provide strong support for quality control.


Email: hello@utstesters.com

Direct: + 86 152 6060 5085

Tel: +86-596-7686689

Web: www.utstesters.com


Heat and sublimation fastness tester

I. Instrument introduction

The heat and sublimation fastness tester is a professional equipment used to determine the color stability of textiles under high temperature conditions. It mainly evaluates two properties:

1. Heat fastness: color change when the material contacts a high temperature surface

2. Sublimation fastness: color migration caused by the dye directly changing from solid to gas at high temperature


II. Preparation before testing

1. Sample preparation

Cut a sample with a size of 40mm×100mm

The sample needs to be balanced under standard atmospheric conditions (20±2℃, 65±2%RH) for 24 hours

Prepare multi-fiber adjacent fabrics or single-fiber adjacent fabrics of the same size


2. Instrument inspection

Confirm that the surface of the heating plate is clean and free of contamination

Check the accuracy of the temperature control system

Ensure that the pressure device is working properly

Calibrate the temperature sensor


III. Operation steps


Heat fastness test

1. Turn on the power and preheat the equipment to the set temperature (usually 180-210℃)

2. Lay the sample flat on the heating plate

3. Lower the pressure device and apply a standard pressure of (4±1) kPa

4. Start timing and keep contact for 30 seconds

5. Immediately raise the pressure device after the time is up and remove the sample

6. Cool the sample under standard atmospheric conditions

7. Use a gray sample card to assess the discoloration level


Sublimation fastness test

1. Overlap the sample with the front of the adjacent fabric

2. Place in a tester that has been preheated to the set temperature (temperature is selected according to the material type)

3. Apply standard pressure (4±1 kPa)

4. Keep for 30 seconds to 4 minutes (according to the test standard requirements)

5. Take out the sample and cool to room temperature

6. Assess the discoloration of the sample and the staining level of the adjacent fabric respectively


IV. Temperature selection reference

Polyester fabric: 180℃ or 210℃

Other synthetic fibers: adjusted according to the fiber melting point

Natural fibers: usually 150-180℃


V. Result evaluation

1. Use a standard gray sample card to assess:

Discoloration level (1-5, 5 is the best)

Staining level (1-5, 5 is the best)

2. Record the test conditions (temperature, time, pressure)

3. Take photos before and after the test


Related standards

ISO 105-X11: Textile color fastness test

AATCC 133: Heat color fastness

GB/T 8427: Textile color fastness test

Email: hello@utstesters.com

Direct: + 86 152 6060 5085

Tel: +86-596-7686689

Web: www.utstesters.com




How to use a manual button tensile machine

Usually includes the following steps. The specific operation may vary slightly depending on the equipment model. Please refer to the equipment manual:

Preparation

1. Check the equipment

① Confirm that all parts of the tensile machine (clamp, handle, dial, etc.) are intact.

② Ensure that the clamp is clean and free of oil or residue to avoid affecting the test results.


2. Calibrate the equipment (first use or regular calibration)

Adjust the pointer to zero according to the manual, or use a standard weight to verify the accuracy of the reading.


3. Prepare the sample

(1) Sew the button to be tested on the standard fabric (or keep the button on the original garment), ensuring that the seam is firm.

(2) Cut the fabric and leave enough area around the button (usually ≥5cm×5cm) for clamping.


Test steps

1. Fix the sample

Upper clamp: clamp the fabric (avoid the seam) and ensure that the fabric is flat and does not slide.

Lower clamp: Clamp the button (if it is a four-hole button, it needs to be fixed with a special clamp or hook).

Note: The direction of the clamp must be consistent with the force direction of the button (such as vertical or horizontal stretching).


2. Start the test

(1) Slowly turn the handle or pull the lever to apply tension at a constant speed (usually the speed recommended is 10-15cm/min).

(2) Observe the connection between the button and the fabric until the button falls off or the stitching breaks.


3. Record data

(1) Read the maximum tension value indicated by the pointer (usually in Newtons N or pounds-force lbf).

(2) Record the damage form when the button falls off (such as stitching breakage, button fragmentation, etc.).


Post-test operation

1. Reset the equipment

(1) Loosen the clamp, remove the sample, and return the handle of the tensile machine to its original position.

(2) Clean the thread or fabric fragments remaining in the clamp.


2. Data analysis

Compare the test results with industry standards (such as ASTM D4846, ISO 13935, etc.) to determine whether the button is qualified.


Precautions

Safe operation: Avoid rapid force or overload testing to prevent the fixture from breaking and injuring people.

Environmental conditions: It is recommended to test in a standard temperature and humidity environment (such as 23±2℃, 50±5%RH).

Multiple tests: It is recommended to test the same button 3-5 times and take the average value to improve accuracy.

Common problem handling

The pointer does not return to zero: Check whether the spring or lever is stuck, and contact the manufacturer for calibration if necessary.

Button slips: Replace the fixture or use an anti-slip pad to enhance the clamping force.

If more detailed guidance is required, please provide the equipment model or refer to the specific manual.


Email: hello@utstesters.com

Direct: + 86 152 6060 5085

Tel: +86-596-7686689

Web: www.utstesters.com


Manual rubbing color fastness tester use

I. Instrument overview

The manual rubbing color fastness tester is used to evaluate the color transfer degree of textiles, leather, coated fabrics and other materials under dry or wet rubbing conditions. The equipment is easy to operate and is suitable for rapid color fastness testing in laboratories or factories. It complies with relevant standards (such as GB/T 3920, ISO 105-X12, AATCC 8, etc.).


II. Test principle

By manually operating the friction device, the standard friction cloth is rubbed back and forth on the surface of the sample with the specified pressure and number of frictions, and the color staining of the friction cloth is observed and compared with the standard grayscale sample card for rating.


III. Operation steps


1. Preparation

Sample preparation:

Cut the sample to be tested with a size of ≥20cm×5cm (adjusted according to the standard), ensuring that the surface is flat, wrinkle-free and stain-free.

Rubbing cloth cutting: Use standard bleached cotton cloth (as specified in GB/T 7568) and cut it into a 5cm×5cm square.

Wet friction test: The friction cloth needs to be soaked with distilled water, and the moisture content is controlled at 100±5% (the moisture can be controlled by wringing).


2. Install the friction cloth

Wrap the friction cloth flatly on the friction head (usually a round friction head with a diameter of 16mm) and fix it with a rubber band or a fixing clip to ensure that there is no looseness or wrinkles.


3. Fix the sample

Spread the sample to be tested flat on the test bench or flat table and fix it with a clamp to prevent movement.


4. Manual friction test

Dry friction test:

1. Press the friction head wrapped with the friction cloth vertically on the surface of the sample.

2. Apply standard pressure (usually 9N or as required by the standard).

3. Rub back and forth 10 times at a uniform speed in the straight direction (one way is about 10cm, speed is about 1 time/second).

Wet friction test:

1. After the friction cloth is soaked, gently squeeze out excess water (avoid dripping).

2. Perform the test according to the dry friction steps. After the friction is completed, remove the friction cloth and dry it immediately.


5. Result evaluation

After the friction cloth is dry (wet friction needs to be dried naturally), compare it with the standard staining gray scale sample card (such as ISO 105-A03) and evaluate the staining level (level 5 is the best and level 1 is the worst).

Record the test results of dry friction and wet friction, and use the lower level as the final evaluation.


Email: hello@utstesters.com

Direct: + 86 152 6060 5085

Tel: +86-596-7686689

Web: www.utstesters.com


Notice on the holiday arrangement for May Day in 2025

Dear customers:

Hello!

On the occasion of May Day, thank you for your trust and support for our company. According to the national statutory holidays and the actual situation of our company, the holiday time and service arrangements are hereby notified as follows:


Our holiday time:

May 1, 2025 (Thursday) to May 5 (Monday), a total of 5 days.

April 27 (Sunday) and May 10 (Saturday) will be normal work.


Service arrangements:

1. During the holiday, our company will suspend logistics delivery (if you need urgent assistance, please contact the duty phone: 0596-7686689).


Thank you again for your understanding and support! I wish you a happy holiday and a healthy family!



UTS International Co., Ltd.

April 25, 2025

Single yarn strength usage instructions

1. Product Overview

Single yarn strength refers to the maximum force that a single yarn can withstand when it is stretched and broken, and is one of the important indicators for measuring yarn quality. This product is suitable for testing and evaluating yarn strength in the textile industry.


2. Scope of application

1. Strength test of various types of yarns such as cotton yarn, wool yarn, and chemical fiber yarn

2. Quality control of textile production enterprises

3. Acceptance standards for yarn procurement

4. Material performance research of scientific research institutions


3. Technical parameters

1. Test range: 0-5000cN

2. Accuracy: ±1%

3. Clamping distance: 100mm, 250mm, 500mm (adjustable)

4. Stretching speed: 50-500mm/min (adjustable)

5. Test environment: temperature 20±2℃, relative humidity 65±3%


4. Operation steps


4.1 Preparation

1. Place the instrument on a stable workbench

2. Connect the power supply and preheat for 15 minutes

3. Set the appropriate clamping distance and stretching speed according to the yarn type

4. Prepare the yarn sample to be tested to ensure that it is not damaged and has no knots


4.2 Test process

1. Clamp the yarn sample vertically in the upper and lower clamps

2. Ensure that the yarn is not loose and is perpendicular to the fixture

3. Start the test program

4. The instrument automatically records the breaking strength value

5. Repeat the test at least 20 times to obtain reliable data


4.3 Data processing

1. Calculate the average single yarn strength

2. Calculate the strength unevenness

3. Record the maximum and minimum values

4. Generate a test report


5. Notes

1. The instrument should be calibrated before testing

2. Different types of yarn should use corresponding test parameters

3. Avoid the fixture from clamping the yarn and affecting the test results

4. The temperature and humidity of the test environment should meet the standard requirements

5. Clean the fixture surface regularly to maintain the test accuracy


6. Maintenance

1. Perform a full calibration once a month.

2. Clean the instrument surface after each use.

3. Check the sensor sensitivity regularly.

4. When not in use for a long time, the power should be turned off and covered to prevent dust.

Email: hello@utstesters.com

Direct: + 86 152 6060 5085

Tel: +86-596-7686689

Web: www.utstesters.com

How to Customize Mold Manufacturing?

Custom mold manufacturing is a complex process involving multiple stages such as requirements communication, design drafting, material procurement, precision machining, assembly adjustment, and delivery acceptance. Below is the detailed process:

1. Requirement Communication

Conduct in-depth discussions with clients to clarify the mold's application scenarios, performance requirements, and budget constraints.

2. Design Drafting

Use CAD/CAM software to create precise mold base designs and technical drawings tailored to client specifications.

3. Material Procurement

Select high-quality steel or alloy materials to ensure the strength and stability of the mold base.

4. Precision Machining

Employ high-accuracy processes like CNC machining and EDM (Electrical Discharge Machining) for fine processing of mold components.

5. Assembly & Testing

Assemble the mold and conduct multiple trial runs to verify precision and operational stability.

6. Delivery & Acceptance

Deliver the mold upon client approval and provide ongoing maintenance support.

 

 

Key Technologies in Custom Mold Manufacturing

Critical technologies include high-precision machining capabilities, customized services, and technical innovation. For instance, Xiamen Craft Co., Ltd. utilizes advanced equipment and expertise to deliver tailored solutions. Manufacturers typically offer end-to-end services—from design consultation to production oversight and post-sales support—ensuring precise alignment with client needs.

 

Custom molds are widely used in automotive, electronics, home appliances, medical, and packaging industries. A notable example involves Begmeier Manufacturer, which developed a high-precision, high-strength mold base for a leading medical device company. This solution resolved deformation issues during bumper injection molding, significantly improving product yield and earning client acclaim.

 

 

With the rise of smart manufacturing, mold manufacturers are adopting intelligent transformation strategies. By integrating intelligent robots and automated production lines, they enhance efficiency while reducing labor costs. Sustainability is also prioritized through eco-friendly materials, optimized processes, and improved resource utilization to minimize waste and environmental impact.

To thrive in a competitive market, manufacturers must maintain sharp market insights, foster innovation, strengthen collaborations across supply chains, and build synergistic industry ecosystems to address evolving challenges.